
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr

hichem.smaoui
Journal of Sound and Vibration 300 (2007) 974–992

www.elsevier.com/locate/jsvi
Second-order eigensensitivity analysis of asymmetric damped
systems using Nelson’s method

Najeh Guedriaa, Mnaouar Chouchaneb,�, Hichem Smaouic

aLaboratory of Systems and Applied Mechanics, Polytechnic School of Tunisia, Tunisia
bNational Engineering School of Monastir, Avenue Ibn Eljazzar, 5019 Monastir, Tunisia
cLaboratory of Systems and Applied Mechanics, Polytechnic School of Tunisia, Tunisia

Received 6 April 2006; received in revised form 7 July 2006; accepted 12 September 2006

Available online 27 October 2006
Abstract

First-order eigensensitivity analysis using Nelson’s method is first reviewed. Then, Nelson’s approach is extended to the

computation of the second-order derivatives of the eigenvalues and eigenvectors of symmetric and asymmetric damped

systems. The computation of second-order derivatives may be required for large variation of design parameters and for

some optimization algorithms. Nelson’s method has the advantage of requiring only the knowledge of the eigenvector to be

differentiated. Only systems with distinct eigenvalues are considered in this paper. Two numerical examples have been

selected to illustrate the application and the utility of the derived expressions of the first- and second-order

eigensensitivities. A four degree of freedom symmetric damped system is chosen for the first example whereas a finite

element asymmetric 20 dof damped rotor model is considered in the second example.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The study of vibration of structural and mechanical systems usually requires the computation of the
eigensolutions. Owing to the environmental influences and real working conditions, variations in system
parameters may occur, leading to small or sometimes large changes in the eigenvalues and eigenvectors. The
derivatives of the eigensolutions can be used to gain insight into the extent of variation of the eigensolutions
due to the change of design parameters. Furthermore, eigensensitivities are used in several other applications
such as design modification, system optimization, damage detection and model updating.

One of the earliest methods for the computation of the first-order derivatives of the eigenvalues and
eigenvectors is derived by Fox and Kapoor [1]. In this method, the derivative of any eigenvector with respect
to a chosen design parameter is expressed as a linear combination of all eigenvectors. In 1976, Nelson
introduced another approach for the exact computation of the eigenvector derivatives [2]. This method
constitutes a significant contribution for the sensitivity computation since the calculation of the derivative of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

ci, di scalars used to calculate the first-order
eigenvectors derivatives

ei, fi scalars used to calculate the second-order
eigenvectors derivatives

M, C, K mass, damping, and stiffness matrices
N number of generalized coordinates
p, q system parameters
q(t) vector of generalized coordinates
t time
ui, vi right and left system eigenvectors
xi, yi vectors used to calculate the first-order

eigenvectors

zi, wi vectors used to calculate the second-
order eigenvectors

R set of real numbers
C set of complex numbers
li system eigenvalues
oi undamped natural frequencies
zi damping ratios
fogni

nith component of the ith vector
(.)T transpose of (.)
(.)* complex conjugate of (.)
(o),p partial derivatives of (.) with respect to p

(o),pq partial derivatives of (.) with respect to p

and q
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an eigenvector requires only the knowledge of the eigenvector to be differentiated. Other approaches for
sensitivity computation have also been derived later [3,4] by which eigenpair sensitivities are computed
simultaneously for each mode. All these methods are limited to symmetric undamped systems. Sensitivity
computation methods are developed later for damped and asymmetric systems. Lee et al. [5] have proposed a
procedure for determining simultaneously the sensitivities of the eigenvalues and the eigenvectors of
symmetric damped vibratory systems. Adhikari [6,7] derived a calculation method of the derivatives of
complex modes based on the modal approach. Subsequent researches have also considered asymmetric
systems. Friswell and Adhikari extended Nelson’s method to computation of the first eigenderivatives of
damped symmetric and asymmetric systems [8]. Recently, Choi et al. have also proposed an algebraic method
for non-conservative asymmetric systems [9]. However, this method does not consider left eigenvectors and is
limited to first-order derivatives.

Whereas a large body of literature has dealt with first-order sensitivity analysis, little attention has
been devoted to second-order sensitivity. Nevertheless, the need for second-order sensitivities often arises.
This occurs in optimization and reliability analysis algorithms, such as Newton’s method and second-
order reliability method (SORM) that require second-order information. In addition, second-order deri-
vatives are needed for approximations where large variations in design parameters are considered or when
natural frequencies are closely spaced [10,11]. In Ref. [12], a computation method for the second-
order derivatives of eigensolutions of asymmetric damped systems has been derived using the modal method.
This method, however, is only applicable when the system matrices are linear functions of the design
variables and requires the knowledge of all eigenvectors for accurate eigenvector sensitivity computation. An
algebraic approach has also been proposed in Ref. [13] for computing second and higher order
eigensensitivities of damped systems with repeated eigenvalues; however, it is applicable to symmetric
systems only.

In the present paper, Nelson’s method for computing first-order eigensensitivities is reviewed and then
extended to the calculation of second-order derivatives of both left and right eigenvectors for damped,
symmetric as well as asymmetric systems with distinct eigenvalues.

Section 2 gives a summary of the calculation of eigenvalues and eigenvectors for asymmetric damped
systems. Section 3 presents a brief review of Nelson’s method for first-order eigenvector derivatives of
symmetric and asymmetric damped systems. The derivation of second-order sensitivities of eigenvalues of
asymmetric damped systems is detailed in Section 4. Next, in Sections 5 and 6, Nelson’s method is extended to
the second-order derivatives of eigenvectors for both symmetric and asymmetric systems. Finally, two
numerical examples are considered in Section 7. The first example is a four degree of freedom symmetric
damped system. The second is a 20 degree of freedom finite element model of a rotor which corresponds to a
damped asymmetric system.
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2. Computation of eigensolution of asymmetric damped systems

The equations of motion for the free vibration of a linear damped discrete system with N degrees of freedom
can be expressed as

M€qðtÞ þ C_qðtÞ þ KqðtÞ ¼ 0, (1)

where M, C and K 2 RN�N are mass, damping and stiffness matrices, respectively, qðtÞ 2 RN is the vector of
generalized coordinates and t 2 Rþ denotes time.

In this paper, the matrices C and K may be asymmetric and damping is assumed to be non-proportional.
For this class of vibratory systems, the eigenvalues and their associated right and left eigenvectors are in
general complex.

The eigenvalues of system (1) are the roots of the characteristic polynomial

detðl2Mþ lCþ KÞ ¼ 0. (2)

The order of the polynomial is 2N and the distinct eigenvalues li for i ¼ 1, 2,y,N, assumed to be distinct,
appear in complex conjugate pairs for under damped systems. The eigenvalues are usually sorted in increasing
order of their imaginary parts, which correspond to the damped natural frequencies: l1; . . . ; lN ; l�1; . . . ; l

�
N ,

where (o)* denotes complex conjugate of (o).
The right and left eigenvalue problems can be expressed, respectively, as follows:

Fi ui ¼ 0; i ¼ 1; . . . ;N, (3)

vTi Fi ¼ 0T; i ¼ 1; . . . ;N, (4)

where Fi ¼ l2i Mþ liCþ K
� �

; ui 2 CN is the ith right eigenvector, vi 2 CN is the left eigenvector and (o)T

denotes vector transpose.
If the mass matrix M is non-singular, then the eigenvectors are usually normalized so that

vTi Giui ¼ 1; i ¼ 1; . . . ;N, (5)

where Gi ¼ [2liM+C].
However, the above normalization condition is not sufficient to ensure uniqueness of eigenvectors which is

essential for existence of derivatives. For example, multiple solutions can be obtained by multiplying the left
eigenvector by any scalar value and dividing the right eigenvector by the same scalar. To guarantee uniqueness
of eigenvectors, an additional constraint, adopted by many authors [2,8,12], should be imposed which consists
in setting one component to be equal in both left and right eigenvectors so that

uif gni
¼ vif gni

, (6)

where fogni
denotes the nith component of the ith eigenvector. The index ni is selected such that the product of

the magnitudes of the corresponding components in the eigenvectors is the largest. Thus,

uif gni

�� �� vif gni

�� �� ¼ max
ki

uif gki

�� �� vif gki

�� ��� �
. (7)

Using the above procedure, sorted complex eigenvalues and their associated normalized left and right
eigenvector are computed.

In this paper, we are interested in finding the first- and second-order derivatives of the eigenvalues and
eigenvectors. As a preliminary, Nelson’s method for the computation of the first derivatives of the eigenvalues
and eigenvectors [8] is reviewed, then it is extended to the calculation of the second derivatives of the
eigensolutions. The expressions of the sensitivities are given essentially for asymmetric damped systems. The
same expressions are also valid for the case of symmetric damped systems. The system matrices M, C and K

are assumed to be dependent on one or several independent design parameters. For convenience, the following
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notation is used:

oð Þ;p �
q oð Þ

qp
; oð Þ;pq �

q2 oð Þ

qpqq
,

where p and q denote, respectively, two design parameters.

3. First-order eigensensitivity computation

In this section, the expression of the first order eigenvalue derivative and the procedure for the computation
of first-order derivatives of the left and right eigenvectors using Nelson’s approach are presented.

Differentiation of Eq. (3) with respect to the design parameter p yields

Fi ui;p ¼ � li;pGi þ ~Fi;p

� �
ui, (8)

where ~Fi;p ¼ ½l
2
i M;p þ liC;p þ K;p� and Gi ¼ [2liM+C].

Premultiplying each side of Eq. (8) by vTi and using the normalization Eq. (5), the ith eigenvalue first-order
derivatives are given by

li;p ¼ �v
T
i
~Fi;p ui. (9)

The computation of li,p requires the knowledge of the eigenvalue li, its associated left and right
eigenvectors, ui and vi, and the derivatives of the system matrices M,p, C,p and K,p.

The right eigenvector derivative ui,p, however, cannot be computed directly using Eq. (8) since the matrix Fi

is singular, of rank (N�1) in the case of distinct eigenvalues.
For the computation of the left eigenvector derivative vi,p, an equation similar to Eq. (8) is required.

Differentiating Eq. (4) with respect to p gives

vTi;p Fi ¼ �v
T
i li;pGi þ ~Fi;p

� �
. (10)

Due to the singularity of Fi, the left eigenvector derivative vi,p also cannot be computed directly using the
above equation.

An efficient way to overcome the singularity of Fi is to use the Nelson’s approach. Nelson’s method
stabilizes the coefficient matrix Fi and solves the resultant well conditioned system in order to obtain a
particular solution. It then adds a vector, as a homogenous solution, in the direction of the eigenvector, which
defines the null space of the matrix, scaled to achieve the desired normalization. Applying this approach in the
case of asymmetric damped systems, the right, respectively left, eigenvector derivative is expressed as a sum of
a particular solution and a homogeneous solution:

ui;p ¼ xi þ ciui, (11)

vi;p ¼ yi þ divi, (12)

where xi, yi are the particular solutions and ci, di are the coefficients of the homogenous solutions. However,
these four quantities which need to be determined are not unique since any multiple of the eigenvector can be
added to xi (respectively, yi). In order to obtain unique solutions, the component number ni of the eigenvector
is first identified from Eq. (7), and then the nith elements of xi and yi are set to zero. Other elements of xi and yi

could also be set to zero, however, this choice is most likely to produce a numerically well-conditioned
problem according to Ref. [8].

Substituting Eqs. (11) and (12), respectively, into Eqs. (8) and (10), and using Eqs. (3) and (4) yields

Fi xi ¼ hi, (13)

yTi Fi ¼ gi, (14)

where hi ¼ �ðli;pGi þ ~Fi;pÞui and gi ¼ �v
T
i ðli;pGi þ ~Fi;pÞ.

Setting the nith elements of xi and yi to zero and substituting the nith row and nith column of matrix Fi with
the corresponding row and column of the identity matrix, the particular solutions xi and yi are obtained from
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the following two equivalent problems:

F̄ixi ¼ h̄i, (15)

yTi F̄i ¼ ḡi, (16)

where

F̄i ¼

0

Fi11
..
.

Fi13

0

0 . . . 0 1 0 . . . 0

0

Fi31
..
.

Fi33

0

2
6666666666666664

3
7777777777777775

nith row; xi ¼

xi1

..

.

xi ni�1ð Þ

0

xi niþ1ð Þ

..

.

xiN

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

and h̄i ¼

hi1

..

.

hi ni�1ð Þ

0

hi niþ1ð Þ

..

.

hiN

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

,

nith column ð17Þ

yi and ḡi have, respectively, the same form as xi and h̄i.
Once the particular solutions are found, it remains to compute the scalar constants ci and di of the

homogenous solutions so that the derivatives of the eigenvectors are completely determined. Differentiating
Eq. (5) and substituting expressions (11) and (12) yields

ci þ di ¼ �v
T
i Gi xi � yTi Gi ui � vTi ð2Mli;p þ ~Gi;pÞui, (18)

where ~Gi;p ¼ 2liM;p þ C;p

� �
.

From Eq. (6), it can be deduced that

ui;p

� �
ni
¼ vi;p

� �
ni
. (19)

Since the same component number ni is chosen for the null component in both particular solutions xi and yi,
Eq. (19) yields

ci ¼ di. (20)

Hence ci and di can be calculated from Eq. (18), and the derivatives of the right and left eigenvectors ui,p and
vi,p deduced from Eqs. (11) and (12).

4. Second-order derivatives of the eigenvalues

In this section, an expression is derived for the second-order derivative of the complex eigenvalues of
asymmetric damped systems with respect to two design parameters p and q. Differentiating Eq. (8) with
respect to q, premultiplying the result by vTi and using Eqs. (3) and (4) yields

li;pq ¼ �
1

vTi Giui

vTi
~~Fi;pq þ li;p

~Gi;q þ li;q
~Gi;p

	 

ui þ vTi

~Fi;p þ li;pGi

� �
ui;q

h
þvTi

~Fi;q þ li;qGi

� �
ui;p þ 2li;pli;qv

T
i Mui

�
, ð21Þ

where

Gi ¼ 2liMþ C½ �,

~Gi;a ¼ 2liM;a þ C;a
� �

; a � p or q,

~Fi;a ¼ l2i M;a þ liC;a þ K;a
� �

; and

~~Fi;pq ¼ l2i M;pq þ liC;pq þ K;pq

� �
. ð22Þ
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The right-hand side of Eq. (21) is a function of the ith eigenvalue and eigenvectors and their first-order
derivatives as well as the first and second derivatives of the system matrices. For symmetric damped systems,
the left and right eigenvectors are equal, thus Eq. (21) is written as

li;pq ¼ �
1

uTi Giui

uTi
~~Fi;pq þ li;p

~Gi;q þ li;q
~Gi;p

	 

ui þ uTi Fi;p þ li;pGi

� �
ui;q

h
þuTi Fi;q þ li;qGi

� �
ui;p þ 2li;pli;qu

T
i Mui

�
. ð23Þ

For the particular case of a double derivative, li,pp is expressed, respectively, in the case of asymmetric and
symmetric damped systems as

li;pp ¼ �
2

vTi Giui

0:5vTi
~~Fi;ppui þ li;pv

T
i
~Gi;pui þ vTi Fi;p þ li;pGi

� �
ui;p þ l2i;pv

T
i Mui

h i
, (24)

li;pp ¼ �
2

uTi Giui

0:5uTi
~~Fi;ppui þ li;pu

T
i
~Gi;pui þ uTi Fi;p þ li;pGi

� �
ui;p þ l2i;pu

T
i Mui

h i
. (25)

It should be noted that if the system matrices are linear functions of the design parameters, ~~Fi;pq and
~~Fi;pp are

then equal to null matrices in the above equations.
The second-order derivatives of the eigenvalues of undamped asymmetric and symmetric systems can be

deduced respectively from Eqs. (21) and (23). For an undamped asymmetric or symmetric system, C ¼ 0 and
the eigenvalues are purely imaginary. The ith eigenvalue is expressed as li ¼ joi where j ¼

ffiffiffiffiffiffiffi
�1
p

and oi 2 R is
the ith undamped natural frequency. The right and left eigenvectors are real, i.e, ui 2 RN ; vi 2 RN . The
expressions of Gi; ~Gi;a; ~Fi;a and ~~Fi;pq in Eq. (22) become

Gi ¼ 2joiM,

~Gi;a ¼ 2joiM;a; a � p or q,

~Fi;a ¼ �o2
i M;a þ K;a

� �
; and

~~Fi;pq ¼ �o2
i M;pq þ K;pq

� �
. ð26Þ

Substituting the expressions given in Eq. (26) into Eq. (21) yields the second order derivative of the
eigenvalues of asymmetric undamped systems expressed in the following frequently used form

o2
i

� �
;pq
¼

1

vTi Mui

vTi �o
2
i M;pq þ K;pq � 2oioi;pM;q � 2oioi;qM;p

� �
ui

�
þ vTi �o

2
i M;p þ K;p � 2oioi;pM

� �
ui;q

þvTi �o
2
i M;q þ K;q � 2oioi;qM

� �
ui;p

�
. ð27Þ

For symmetric undamped systems, vi ¼ ui, thus, Eq. (27) can be simplified as follows:

o2
i

� �
;pq
¼

1

uTi Mui

uTi �o
2
i M;pq þ K;pq � 2oioi;pM;q � 2oioi;qM;p

� �
ui

�
þ uTi �o

2
i M;p þ K;p � 2oioi;pM

� �
ui;q

þuTi �o
2
i M;q þ K;q � 2oioi;qM

� �
ui;p

�
. ð28Þ

For the double derivative with respect to the same parameter, Eqs. (27) and (28) become

o2
i

� �
;pp
¼

1

vTi Mui

vTi �o
2
i M;pp þ K;pp � 4oioi;pM;p

� �
ui

�
þ2vTi �o

2
i M;p þ K;p � 2oioi;pM

� �
ui;p

�
, ð29Þ

o2
i

� �
;pp
¼

1

uTi Mui

uTi �o
2
i M;pp þ K;pp � 4oioi;pM;p

� �
ui

�
þ2uTi �o

2
i M;p þ K;p � 2oioi;pM

� �
ui;p

�
. ð30Þ
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It should be noted that when the standard normalization condition for undamped systems is used, both
products vTi Mui, in Eqs. (27) and (29), and uTi Mui, in Eqs. (28) and (30), are equal to unity. The second-order
derivative of the ith undamped frequency oi,pq and oi,pp can be computed using, respectively, the following
equations:

oi;pq ¼
o2

i

� �
;pq
� 2oi;poi;q

2oi

, (31)

oi;pp ¼
o2

i

� �
;pp
� 2 oi;p

� �2
2oi

. (32)

5. Second-order derivatives of the eigenvectors of symmetric damped systems

In the following, the idea underlying Nelson’s approach is applied to derive expressions for the second-order
derivatives of the eigenvectors of symmetric damped systems with respect to two independent design
parameters p and q.

For symmetric damped systems, the matrices M, C and K are symmetric and the left and right eigenvectors
are equal. Differentiating Eq. (8) with respect to the design parameter q yields

Fi ui;pq ¼ ki, (33)

where ki is given by the following expression:

ki ¼ � ~Fi;q þ li;qGi

� �
ui;p þ ~Fi;p þ li;pGi

� �
ui;q þ

~~Fi;pq þ li;pqGi

	 

ui

h
þ ~Gi;pli;q þ ~Gi;qli;p þ 2li;pli;qM
� �

ui

�
. ð34Þ

As for the case of first-order derivatives, the second-order derivatives of the eigenvectors are written as a
sum of a particular and a homogeneous solutions

ui;pq ¼ zi þ eiui. (35)

The particular solution zi can be obtained in a similar manner to that of the first derivatives xi, by solving
the equivalent problem

F̄izi ¼ k̄i. (36)

The matrix F̄i is given by Eq. (17) and the vector k̄i is obtained by zeroing the nith components of the vectors
ki. The number ni corresponds to the index of the element of the maximum magnitude in ui. The particular
solution zi can thus be computed from the non-singular system given by Eq. (36).

To compute the coefficient of the homogeneous solution ei, Eq. (5) is differentiated twice, respectively, with
respect to p and q after substituting vi by ui. Furthermore, using the expression of the second order derivatives
of the eigenvector, Eq. (35) and the normalization condition, Eq. (5), yields

ei ¼ � 0:5 2 zTi Giui

� �
þ uTi

~~Gi;pq þ ~Gi;q þ 2li;qM
� �

þ 2 li;pqMþ li;pM;q þ li;qM;p

� �	 

ui

h
þ uTi;p

~Gi;q þ 2li;qM
� �

ui þ uTi;q
~Gi;p þ 2li;pM
� �

ui þ uTi Gi þ ~Gi;p þ 2li;pM
� �

ui;q

þuTi;qGi ui;p

i
, ð37Þ

where
~~Gi;pq ¼ 2liM;pq þ C;pq

� �
.

Thus, using the particular solution zi obtained from the solution of Eq. (36) and the scalar ei, the second-
order derivatives ui,pq is computed using Eq. (35).

A particular case to consider is the second order derivatives of the eigenvectors with respect to the same
design parameter (p ¼ q). In this case, Eq. (33) becomes

Fi ui;pp ¼ ki (38)
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with the following expression of ki:

ki ¼ �2 ~Fi;p þ li;pGi

� �
ui;p þ 0:5 ~~Fi;pp þ li;ppGi

	 

ui þ li;p

~Gi;p þ li;pM
� �

ui

h i
(39)

and the coefficient of the homogenous solution is expressed as

ei ¼ � 0:5 2 zTi Giui

� �
þ uTi

~~Gi;pp þ ~Gi;p þ 2li;pM
� �

þ 2 li;ppMþ 2li;pM;p

� �	 

ui

h
þ2uTi;p

~Gi;p þ 2li;pM
� �

ui þ uTi Gi þ ~Gi;p þ 2li;pM
� �

ui;p þ uTi;pGi ui;p

i
. ð40Þ

For symmetric undamped systems, M ¼MT, K ¼ KT, C ¼ 0 the eigenvalues are purely imaginary so that
li ¼ joi and the eigenvectors are real. The expression of ki becomes

ki ¼ � �o2
i M;q þ K;q

� �
ui;p þ �o2

i M;p þ K;p

� �
ui;q þ �o2

i M;pq þ K;pq

� �
ui

�
� 2oi oi;qMui;p þ oi;pMui;q þ oi;pqMþ oi;qM;p þ oi;pM;q

� �
ui

� �
�2oi;poi;qMui

�
. ð41Þ

The scalar ei is computed by differentiating twice the usual mass orthogonality of the real undamped modes,
which yields the following expression:

ei ¼ � 0:5 2zTi Mþ uTi;pM;q þ uTi;qM;p þ uTi M;pq

	 

ui

h
þ uTi;pMþ uTi M;p

	 

ui;q þ uTi;qMþ uTi M;q

	 

ui;p

i
. ð42Þ

6. Second-order derivatives of the eigenvectors of asymmetric damped systems

Similarly to the case of first-order eigenvector derivatives, the second-order derivative of the left and right
eigenvectors with respect to two independent design parameters p and q must be computed simultaneously.
Differentiating Eqs. (8) and (10) with respect to the design parameter q yields

Fi ui;pq ¼ ki, (43)

vTi;pq Fi ¼ li, (44)

where ki and li are given by the following expressions:

ki ¼ � ~Fi;q þ li;qGi

� �
ui;p þ ~Fi;p þ li;pGi

� �
ui;q þ

~~Fi;pq þ li;pqGi

	 

ui

h
þ ~Gi;pli;q þ ~Gi;qli;p þ 2li;pli;qM
� �

ui

�
, ð45Þ

li ¼ � vTi;p
~Fi;q þ li;qGi

� �
þ

h
vTi;q

~Fi;p þ li;pGi

� �
þ vTi

~~Fi;pq þ li;pqGi

	 

þvTi

~Gi;pli;q þ ~Gi;qli;p þ 2li;pli;qM
� ��

. ð46Þ

As for the case of first-order derivatives, the second-order derivatives of the right and left eigenvectors are
written as a sum of a particular and a homogeneous solutions

ui;pq ¼ zi þ eiui, (47)

vi;pq ¼ wi þ f ivi. (48)

The particular solutions zi and wi can be obtained in a similar manner to those of the first derivatives xi and
yi, by solving, respectively, the two equivalent problems

F̄i zi ¼ k̄i, (49)

wT
i F̄i ¼ l̄i. (50)
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The matrix F̄i is given by Eq. (17). The vectors k̄i and l̄i are obtained, respectively, by zeroing the nith
components of the vectors k̄i and l̄i. The number ni is determined from Eq. (7). The particular solutions zi and
wi can thus be computed from the non-singular systems given by Eqs. (49) and (50).

The coefficients of the homogeneous solutions ei and fi are computed by differentiating twice Eq. (5) with
respect to p and q. Moreover, using the expressions of the second-order derivatives of the eigenvectors, Eqs.
(47) and (48) and the normalization condition (5) yields

ei þ f i ¼ � wT
i Giui þ vTi Gizi þ vTi

~~Gi;pq þ 2 li;pqMþ li;pM;q þ li;qM;p

� �	 

ui

h
þ vTi;p

~Gi;q þ 2li;qM
� �

ui þ vTi;q
~Gi;p þ 2li;pM
� �

ui þ vTi
~Gi;q þ 2li;qM
� �

ui;p

þvTi Gi þ ~Gi;p þ 2li;pM
� �

ui;q þ vTi;qGiui;p

i
. ð51Þ

Since the nith elements of the right and left eigenvectors are equal, Eq. (6), so are the corresponding
components of the second derivatives

ui;pq

� �
ni
¼ vi;pq

� �
ni
, (52)

which leads to

ei ¼ f i. (53)

Eqs. (51) and (53) are sufficient to determine the constants ei and fi. Thus, using the particular solutions zi

and wi obtained from the solution of Eqs. (49) and (50) and the constants ei and fi, the second-order derivatives
ui,pq and vi,pq are computed using Eqs. (47) and (48).

One particular case of interest is the second-order derivatives of the eigenvectors with respect to the same
design parameter (p ¼ q). In this case, Eqs. (43) and (44) become

Fi ui;pp ¼ ki, (54)

vTi;pp Fi ¼ li, (55)

where

ki ¼ �2 ~Fi;p þ li;pGi

� �
ui;p þ 0:5 ~~Fi;pp þ li;ppGi

	 

ui þ ~Gi;pli;p þ l2i;pM

	 

ui

h i
, (56)

li ¼ �2 vTi;p
~Fi;p þ li;pGi

� �
þ 0:5vTi

~~Fi;pp þ li;ppGi

	 

þ vTi

~Gi;pli;p þ l2i;pM
	 
h i

. (57)

The coefficients ei and fi of the homogenous solutions are identical and equal

ei ¼ f i ¼ � 0:5 wT
i Giui þ vTi Gizi þ vTi

~~Gi;pp þ 2 li;ppMþ 2li;pM;p

� �	 

ui

h
þ 2vTi;p

~Gi;p þ 2li;pM
� �

ui þ 2vTi
~Gi;p þ 2li;pM
� �

ui;p

þvTi Giui;p þ vTi;pGiui;p

i
. ð58Þ

For asymmetric undamped systems, C ¼ 0, the eigenvalues are purely imaginary. The right and left
eigenvectors are real, i.e., ui 2 RN ; vi 2 RN . To compute ui,pq and vi,pq, Eqs. (43) and (44) are used, where ki

and li have the same expressions given by Eqs. (45) and (46). Using Eq. (26) yields

ki ¼ � �o2
i M;q þ K;q

� �
ui;p þ �o2

i M;p þ K;p

� �
ui;q þ �o2

i M;pq þ K;pq

� �
ui

�
� 2oi oi;qMui;p þ oi;pMui;q þ oi;pqMþ oi;qM;p þ oi;pM;q

� �
ui

� �
�2oi;poi;qMui

�
, ð59Þ
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Table 1

The algorithm for Nelson’s method in the case of asymmetric damped systems

First order eigenderivatives

1. Compute li;p ¼ �v
T
i
~Fi;p ui .

2. Compute respectively hi ¼ �ðli;pGi þ ~Fi;pÞui and gi ¼ �v
T
i ðli;pGi þ ~Fi;pÞ.

3. Construct F̄i by zeroing out the ni row and column of Fi and set the nith diagonal element to 1.

4. Construct h̄i and ḡi by zeroing the nith element respectively of hi and gi.

5. Solve the two linear systems: F̄i xi ¼ h̄i and yT
i F̄i ¼ ḡi .

6. Compute ci and di using Eqs. (18) and (20).

7. Compute ui,p ¼ xi+ciui and vi,p ¼ yi+divi.

8. Repeat steps 1–7 for the design parameter q.

Second order eigenderivatives

9. Compute li,pq using Eq. (21).

10. Compute ki and li using respectively Eqs. (45) and (46).

11. Construct k̄i and l̄i by zeroing the nith element respectively of ki and li.

12. Solve the two linear systems F̄i zi ¼ k̄i and wT
i F̄i ¼ l̄i.

13. Compute ei and fi using Eqs. (51) and (53).

14. Compute ui,pq ¼ zi+eiui and vi,pq ¼ wi+fivi.
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li ¼ � vTi;p �o
2
i M;q þ K;q

� �
þ vTi;q �o

2
i M;p þ K;p

� �
þ vTi �o

2
i M;pq þ K;pq

� �h
� 2oi oi;qv

T
i;pMþ oi;pv

T
i;qMþ vTi oi;pqMþ oi;qM;p þ oi;pM;q

� �h i
�2oi;poi;qv

T
i M
�
. ð60Þ

To obtain the coefficients ei and fi of the homogenous solutions, the normalization condition vTi Mui ¼ 1, is
differentiated twice and Eqs. (47) and (48) are used. In addition, the constraint, Eq. (52) is also used, yielding

ei ¼ f i ¼ � 0:5 wT
i Mþ vTi;pM;q þ vTi;qM;p þ vTi M;pq

	 

ui

h
þ vTi;pMþ vTi M;p

	 

ui;q þ vTi;qMþ vTi M;q

	 

ui;p þ vTi Mzi

i
. ð61Þ

Therefore, the expressions developed above constitute an extension of Nelson’s method to the computation
of the second-order derivatives of the eigenvectors for asymmetric damped systems with respect to two distinct
or identical design parameters. It has also been shown that second-order derivatives of eigenvectors of
undamped systems can be obtained as a particular case from the general derived expressions. The complete
procedure, derived from Nelson’s approach, for computing first- and second eigenderivatives in the case of
asymmetric damped systems is summarized in Table 1.
7. Numerical examples

In order to apply the expressions derived in this paper and to demonstrate the importance of second order
eigensolution sensitivities, two numerical examples are treated. In the first example, a 4-dof symmetric damped
system is considered, while the second example consists of a rotor system described by a 20-dof finite element
model.
7.1. A symmetric damped system example

The four degree of freedom symmetric damped system considered is shown in Fig. 1. The damping
coefficient c1 is chosen as a design parameter. The system matrices and their derivatives with respect to the
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k1 k5

k4k3k2

c1 c3c2

m m m m

1

Fig. 1. The 4 dof discrete system, m ¼ 1 kg, k1 ¼ k3 ¼ 1000N/m, k2 ¼ k4 ¼ 200N/m, c1 ¼ c3 ¼ 8N s/m, c2 ¼ 2N s/m.

Fig. 2. The real parts of the eigenvalues for the 4-dof system. Eigenvalue 1, eigenvalue 2, eigenvalue 3, eigenvalue 4.
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design parameter c1 are expressed as follows:

M ¼

m 0 0 0

0 m 0 0

0 0 m 0

0 0 0 m

2
6664

3
7775; K ¼

k1 þ k2 �k2 0 0

�k2 k2 þ k3 �k3 0

0 �k3 k3 þ k4 �k4

0 0 �k4 k4 þ k5

2
6664

3
7775;

C ¼

c1 �c1 0 0

�c1 c1 þ c2 �c2 0

0 �c2 c2 þ c3 �c3

0 0 �c3 c3

2
6664

3
7775 and dC

dc1
¼

1 �1 0 0

�1 1 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775:

(62)

The derivatives of the mass and the stiffness matrices with respect to the design parameter c1 are equal to the
null matrix. Figs. 2 and 3 show, respectively, the real and the imaginary parts of the eigenvalues as functions of
the ratio k5/k1. It should be noted that small values of k5 simulate flexible connection between the fourth mass
and the ground, whereas large values correspond to a nearly rigid connection. From examination of Figs. 2
and 3, two veering regions can be observed in which two curves approach each other in the vicinities of
k5/k1 ¼ 1.2 and k5/k1 ¼ 2.5. In the veering regions, two curves get close to each other and may cross or rapidly
diverge. In both cases, rapid changes take place in the derivatives of the eigensolutions. It can also be observed
from Fig. 2 that the system is stable since the real parts of all eigenvalues are negative. The units of both real
and imaginary parts in Figs. 2 and 3 are (rad/s). It should be noted that the numerical values of the system
parameters of the example have been chosen so that the system exhibits veering regions at which the second-
order eigenderivatives are significant.
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Fig. 3. The imaginary parts of the eigenvalues for the 4-dof system. Eigenvalue 1, eigenvalue 2, eigenvalue 3,

eigenvalue 4.

Fig. 4. The real parts of the first derivatives of the eigenvalues with respect to the parameter c1 for the 4-dof system. Eigenvalue 2,

eigenvalue 3, eigenvalue 4.
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Figs. 4 and 5 show, respectively, the real and the imaginary parts of the first derivative of the second, third
and fourth eigenvalues. The derivative of the first eigenvalue is not plotted since it is roughly independent of
the design parameter c1 for all values of the parameter k5. An important variation in the real and imaginary
parts of the first-order derivatives of the third and fourth eigenvalues is observed in the vicinity of k5/k1 ¼ 2.5.
Furthermore, another significant variation in the imaginary parts of the second and third eigenvalue
derivatives is also noted in the neighborhood of k5/k1 ¼ 1.2 as shown in Fig. 5. These large variations indicate
that these three eigenvalues are very sensitive to the design parameter c1 in the vicinities of k5/k1 ¼ 1.2 and
k5/k1 ¼ 2.5. In the vicinities of k5/k1 ¼ 2.5, the second derivatives of the third and fourth eigenvalues are not
negligible as illustrated by Figs. 6 and 7. In this region, both real and imaginary parts of the second derivatives
have values of the same order of magnitude as the first derivatives. Finally, it should be noted that the units of
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Fig. 5. The imaginary parts of the first derivatives of the eigenvalues with respect to the parameter c1 for the 4-dof system.

Eigenvalue 2, eigenvalue 3, eigenvalue 4.

Fig. 6. The real parts of the second derivatives of the eigenvalues with respect to the parameter c1 for the 4-dof system. Eigenvalue 2,

eigenvalue 3, eigenvalue 4.
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the real and imaginary parts of the first derivatives are (rad/s)� (m/N s) whereas the units of the second
derivatives are (rad/s)� (m/N s)2.

7.2. An asymmetric damped system example

As an example of asymmetric damped systems, a two-disk rotor is considered. The rotor, depicted in Fig. 8,
consists of two identical thin rigid disks and a flexible shaft supported at its ends by two bearings. The rotor
system is modeled using the finite element method. The rotor shaft is discretized into 4 identical shaft elements
using a Euler–Bernoulli beam model in which the gyroscopic and the rotary inertia effects are taken into
account. The disks are fixed at the second and fourth nodes. The shaft has a diameter d ¼ 0.05m, a length
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Fig. 7. The imaginary parts of the second derivatives of the eigenvalues with respect to the parameter c1 for the 4-dof system.

Eigenvalue 2, eigenvalue 3, eigenvalue 4.

Fig. 8. A schematic of the 20-dof rotor example.
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L ¼ 0.6m a Young’s modulus E ¼ 2.1� 1011N/m2, a mass density 7850 kg/m3 and a Poisson’s ratio n ¼ 0.3.
Each disk has an external diameter D ¼ 0.4m and a thickness e ¼ 20� 10�3m. Both disks have the same
material as the shaft. The two bearings are modeled using springs and dashpots with coefficients defined in
Fig. 8. The spring stiffness coefficients have the following numerical values:

Kxx1 ¼ 2:6� 106; Kyy1 ¼ 1:2� 106; Kxx2 ¼ 2:1� 106; Kyy2 ¼ 1:3� 106 N=m:

All dashpots have the same damping coefficients c ¼ 103N s/m. The coupling stiffness and damping
coefficients of the bearings are assumed to be negligible. All shaft elements have the same length l ¼ 0.15m.
Thus, the system has 5 nodes. Each node has four degrees of freedom: the transverse displacements and the
rotations in the XZ and YZ planes. Therefore, the model has 20 degrees of freedom, and the vector of degrees
of freedom is partitioned as

q ¼
qXZ

qYZ

( )
.
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Fig. 9. The Campbell diagram for the rotor example. Eigenvalue 1, eigenvalue 2, eigenvalue 3, eigenvalue 4.

Fig. 10. The damping ratios of the first four eigenvalues of the rotor example. Eigenvalue 1, eigenvalue 2, eigenvalue 3,

eigenvalue 4.
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The degrees of freedom are ordered as follows:

qT ¼ x1 yy1 x2 yy2 . . . x5 yy5 y1 yx1 y2 yx2 . . . y5 yx5

n oT

. (63)

The rotor model is therefore a damped asymmetric system, due to the gyroscopic effects of the disks and the
shaft as well as the damping of the bearing dashpots. The Campbell diagram for the first four damped natural
frequencies is shown in Fig. 9 for a rotor speed range from 0 to 15,000 rev/min. Fig. 9 shows also that the
gyroscopic effect increases with the rotational speed especially for the fourth mode. Due to the asymmetric
bearing stiffness, the frequencies are not equal at the lateral planes at zero speed, as shown in the Campbell
diagram. Fig. 9 shows also two veering regions, where two natural frequencies become close, at about 6500
and 11700 rev/min. The variation of the damping ratio with the rotor speed for the first four modes is
presented in Fig. 10. The damping ratio zi is computed from the ith eigenvalue li which is expressed in the



ARTICLE IN PRESS

Fig. 11. The real parts of the first derivatives of the eigenvalues of the rotor example. Eigenvalue 1, eigenvalue 2,

eigenvalue 3, eigenvalue 4.

Fig. 12. The imaginary parts of the first derivatives of the eigenvalues of the rotor example. Eigenvalue 1, eigenvalue 2,

eigenvalue 3, eigenvalue 4.
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following form:

li ¼ �o0izi þ jo0i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
¼ �o0izi þ joi, (64)

where o0i and oi are, respectively, the undamped and damped natural frequency and j ¼
ffiffiffiffiffiffiffi
�1
p

. Large
variations of the damping ratios are also observed in the vicinity of the same two veering regions in Fig. 10. All
the displayed damping ratios in Fig. 10 are positive; other computed damping ratios are also positive which
indicate the stability of the system.

Since damping has an influence on real and imaginary parts of the eigenvalues, these two parts are plotted
for the first and second derivative of the eigenvalues as a function of rotor speed in Figs. 11–14. The real and
the imaginary parts of the first derivatives of the first four eigenvalues are presented respectively in Figs. 11
and 12. These two plots are obtained by programming directly Eq. (9). Note that the first derivatives have
large values in the neighborhood of the first veering region, at about 6500 rev/min. The real and imaginary
parts of the second-order derivative of the eigenvalues are given in Figs. 13 and 14. Eq. (24) is applied to
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Fig. 13. The real parts of the second derivatives of the eigenvalues of the rotor example. Eigenvalue 1, eigenvalue 2,

eigenvalue 3, eigenvalue 4.

Fig. 14. The imaginary parts of the second derivatives of the eigenvalues of the rotor example. Eigenvalue 1, eigenvalue 2,

eigenvalue 3, eigenvalue 4.

Table 2

The first four eigenvalues and their first and second derivatives

Eigenvalues, li dli/dc d2li/dc2

�17.671+217.94i �1,7771� 10�2�8,7138� 10�4i �2,4760� 10�7�8,8971� 10�7i

�23.017+287.50i 1,0679� 10�2+1,1046� 10�2i �7,3550� 10�3�4,1392� 10�2i

�28.614+288.24i �7,9569� 10�2�2,6063� 10�2i �1,7995� 10�4+1,8508� 10�4i

�67.702+642.04i �5,4224� 10�2�2,4413� 10�3i �1,1826� 10�6�4,7987� 10�6i
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obtain these results. Both real and imaginary parts of the second derivative of the second eigenvalue are
significant in the vicinity of the first veering region.

To demonstrate the calculation of the eigensolution derivatives at a particular rotating speed, a suitable
rotor speed of 6500 rev/min from the first veering region is chosen. Table 2 shows the first four eigenvalues of
the rotor system and their first and second derivatives with respect to the dashpot damping coefficient. It can
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Table 3

The second right eigenvector and its first and second derivatives

dof u2 du2/dc d2u2/dc2

1 1,2582� 10�3+7,8858� 10�3i 3,9833� 10�3�1,8984� 10�3i �1,1103� 10�2�6,2666� 10�3i

2 1,8602� 10�2+1,4997� 10�3i �7,6850� 10�3�8,0562� 10�3i �9,3955� 10�3+3,0131� 10�2i

3 4,0400� 10�3+7,9337� 10�3i 2,7382� 10�3�3,0748� 10�3i �1,2283� 10�2�1,5816� 10�3i

4 1,8435� 10�2�2,0184� 10�3i �9,5224� 10�3�7,4205� 10�3i �4,8398� 10�3+3,3420� 10�2i

y y y y

17 �3,2360� 10�3�3,2815� 10�3i �7,5998� 10�4+3,3321� 10�3i 8,8887� 10�3�3,0922� 10�3i

18 �1,8620� 10�2�1,9926� 10�2i �5,0321� 10�3+1,9677� 10�2i 5,3251� 10�2�1,6972� 10�2i

19 �5,9332� 10�3�6,1122� 10�3i �1,4542� 10�3+6,1604� 10�3i 1,6500� 10�2�5,5995� 10�3i

20 �1,7656� 10�2�1,8337� 10�2i �4,4233� 10�3+1,8437� 10�2i 4,9469� 10�2�1,6584� 10�2i

Table 4

The second left eigenvector and its first and second derivatives

dof v2 dv2/dc d2v2/dc2

1 �1,2582� 10�3�7,8858� 10�3i �3,9833� 10�3+1,8984� 10�3i 1,1103� 10�2+6,2666� 10�3i

2 �1,8602� 10�2�1,4997� 10�3i 7,6850� 10�3+8,0562� 10�3i 9,3955� 10�3�3,0131� 10�2i

3 �4,0400� 10�3�7,9337� 10�3i �2,7382� 10�3+3,0748� 10�3i 1,2283� 10�2+1,5816� 10�3i

4 �1,8435� 10�2+2,0184� 10�3i 9,5224� 10�3+7,4205� 10�3i 4,8398� 10�3�3,3420� 10�2i

y y y y

17 �3,2360� 10�3�3,2815� 10�3i �7,5998� 10�4+3,3321� 10�3i 8,8887� 10�3�3,0922� 10�3i

18 �1,8620� 10�2�1,9926� 10�2i �5,0321� 10�3+1,9677� 10�2i 5,3251� 10�2�1,6972� 10�2i

19 �5,9332� 10�3�6,1122� 10�3i �1,4542� 10�3+6,1604� 10�3i 1,6500� 10�2�5,5995� 10�3i

20 �1,7656� 10�2�1,8337� 10�2i �4,4233� 10�3+1,8437� 10�2i 4,9469� 10�2�1,6584� 10�2i
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be noted that the second derivative of the second eigenvalue is significant and therefore is not negligible at this
rotor speed. Tables 3 and 4 present the first and second derivatives of some components of the second right,
respectively, left eigenvector. It can also be noted that the components of the second derivative of these vectors
are of the same order of magnitude, for both real and imaginary parts, as those of the first derivative. The
efficiency of Nelson’s method for the computation of second-order derivatives can be compared to the modal
method given in reference [12]. To compute higher order eigenvector sensitivity, the modal method in its basic
form requires the computation of all lower order eigensolutions and their associated derivatives. Nelson’s
method, however, can be used to compute the sensitivity of a single mode using only the associated
eigensolution and its lower order derivatives. To illustrate the efficiency of Nelson’s approach, the CPU time
required to compute all eigensensitivities of this example for both methods have been checked using the same
computer and the same computing accuracy. The computation time required by the modal method has been
found to be approximately sixteen times the time required using Neslon’s method.
8. Conclusion

The method for computing the first and second order eigensolution derivatives of symmetric damped
systems using Nelson’s approach is first reviewed. Nelson’s approach is then extended to asymmetric damped
systems. Contrary to the modal method, the computation of the derivatives of the eigensolution using the
presented approach requires only the eigensolution to be derived. First- and second-order eigensensitivities of
symmetric damped systems are treated as special cases of the general derived approach. Two numerical
examples have been used to illustrate the application of the method and to show that the second-order
derivatives of the eigensolution compared to the first derivatives are not always negligible. The computation
efficiency of Nelson’s method has also been highlighted.
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